ORGANIC LETTERS

2005 Vol. 7, No. 24 5509-5512

Synthesis of the C(43)—C(67) Fragment of Amphidinol 3

Jacqueline D. Hicks,† Eric M. Flamme,† and William R. Roush*,‡

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry, Scripps-Florida, Jupiter, Florida 33485 roush@scripps.edu

Received September 24, 2005

ABSTRACT

A synthesis of the C(43)—C(67) fragment of amphidinol 3 (AM3) has been accomplished by a route that features the use of a double allylboration reaction for synthesis of 1,5-diol 4b, which serves as a precursor to dihydropyran 11.

The amphidinols are a class of natural products isolated from the marine dinoflagelates *Amphidinium* sp. that display antifungal, hemolytic, cytoxic, and ichthyotoxic activities.¹ Of the 13 polyketide metabolites in this family, amphidinol 3 (AM3) is one of the most biologically active, with antifungal activity against *Aspergillus niger* and hemolytic activity on human erythrocytes.^{1c} AM3 effects cholesterol-dependent membrane disruption, leading to speculation that its mode of action may, in part, be due to disruption of cell membranes.^{1c}

The complex structure of AM3 makes it an interesting synthetic target. It contains a C(52)-C(67) skipped polyene chain, a series of 1,5-diols within the C(2)-C(15) region, two highly substituted tetrahydropyran units, and a total of

25 stereocenters on a contiguous 67 carbon backbone. Since Murata's assignment of the absolute configuration of AM3 appeared in 1999,² a number of synthetic studies toward AM3 have been disclosed, including reports from Cossy,³ Rychnovsky,⁴ Paquette,⁵ and our laboratory.⁶ Herein, we describe a synthesis of the protected C(43)–C(67) fragment **1** of AM3 via the intermediacy of pyran **3**, which will also serve as a precursor to the stereochemically identical C(32)–C(39) tetrahydropyran unit.

Analysis of the C(44)-C(51) and C(32)-C(39) tetrahydropyran units of AM3 reveals these fragments to be identical, suggesting that they should be synthesized from a common intermediate (Figure 1). Disconnection of the C(42)-C(43) and the C(25)-C(26) bonds gives major fragments 1 and 2 (plus the C(1)-C(25) polyol fragment previously synthesized in our group; not shown). Intermediates 1 and 2 can be simplified to the tetrahydropyran 3, which

[†] University of Michigan.

[‡] Scripps-Florida.

^{(1) (}a) Satake, M.; Murata, M.; Yasumoto, T.; Fujita, T.; Naoki, H. J. Am. Chem. Soc. 1991, 113, 9859. (b) Paul, G. K.; Matsumori, N.; Murata, M.; Tachibana, K. Tetrahedron Lett. 1995, 36, 6279.(c) Paul, G. K.; Matsumori, N.; Konoki, K.; Sasaki, M.; Murata, M.; Tachibana, K. In Harmful and Toxic Algal Blooms. Proceeding of the Seventh International Conference on Toxic Phytoplankton; Yasumoto, T., Oshima, Y., Fukuyo, Y., Eds.; UNESCO: Sendai, Japan, 1996; p 503. (d) Paul, G. K.; Matsumori, N.; Konoki, K.; Murata, M.; Tachibana, K. J. Mar. Biotech. 1997, 5, 124. (e) Echigoya, R.; Rhodes, L.; Oshima, Y.; Satake, M. Harmful Algae 2005, 4 383

⁽²⁾ Murata, M.; Matsuoka, S.; Matsumori, N.; Paul, G. K.; Tachibana, K. J. Am. Chem. Soc. 1999, 121, 870.

⁽³⁾ BouzBouz, S.; Cossy, J. Org. Lett. 2001, 3, 1451.

⁽⁴⁾ de Vicente, J.; Betzemeier, B.; Rychnovsky, S. D. Org. Lett. 2005, 7, 1853.

⁽⁵⁾ Paquette, L. A.; Chang, S. Org. Lett. 2005, 7, 3111.

⁽⁶⁾ Flamme, E. M.; Roush, W. R. Org. Lett. 2005, 7, 1411.

Figure 1. Retrosynthetic analysis.

contains all of the stereocenters present in **1** and **2**. We envisioned that tetrahydropyran **3** could be accessed via dehydrative cyclization⁷ of *syn*-1,5-diol **4b**, which in turn would be synthesized by using the double allylboration reaction methodology developed in this laboratory.⁸

Our initial goal was to prepare a differentially functionalized derivative of 4b that would serve as a precursor to pyran 3. Accordingly, we targeted an intermediate such as hydroxy mesylate 10 to serve as the immediate precursor of 3 (Scheme 1). In initial studies, in situ generated γ -borylsubstituted allylborane 68 was treated with aldehyde 5a9 (0.8 equiv) at -78 °C. After the first allylboration was allowed to proceed to completion at -78 °C, p-glyceraldehyde acetonide¹⁰ was added and the reaction mixture was allowed to warm to ambient temperature overnight. This sequence provided the syn-1,5-diol 4a in 57% yield and 4:1 dr. Investigation of the selectivity of each allylation reaction (by isolating the intermediate allylboronate 7 in Scheme 1) revealed that the initial reaction of aldehyde 5a and allylborating reagent 6 is stereochemically mismatched. 11 Fortunately, use of acetonide-protected aldehyde 5b12 in place of 5a resulted in significantly improved mismatched double diastereoselectivity in the first allylboration step; ultimately,

a 70–80% yield of *syn*-1,5-diol **4b** was obtained with an overall reaction selectivity of 9:1 dr after the second allylboration reaction. Because attempts to accomplish the selective mesylation of **4b** were unsuccessful, we pursued the stepwise functionalization approach that we recently reported.⁷ Thus, treatment of **4b** with TESCl (1.05 equiv), imidazole, and DMAP at –78 °C provided the mono-TES ether **9** in 81% yield, with >20:1 regioselectivity for silylation of the allylic alcohol. The homoallylic hydroxyl group was then functionalized as a mesylate and the allylic

5510 Org. Lett., Vol. 7, No. 24, 2005

⁽⁷⁾ Flamme, E. M.; Roush, W. R. Beilstein J. Org. Chem. 2005, 1, 7.

⁽⁸⁾ Flamme, E. M.; Roush, W. R. *J. Am. Chem. Soc.* **2002**, *124*, 13644. (9) Aldehyde **5a** was made starting from dijsopropyl p-tartrate. See the

⁽⁹⁾ Aldehyde 5a was made starting from diisopropyl D-tartrate. See the Supporting Information for details.

⁽¹⁰⁾ Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schantz, R. D.; Sear, N. L.; Vianco, C. S. *J. Org. Chem.* **1991**, *56*, 4056.

⁽¹¹⁾ Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.

⁽¹²⁾ Mukai, C.; Moharram, S. M.; Azukizawa, S.; Hanaoka, M. J. Org. Chem. 1997, 62, 8095.

TES group removed under acidic conditions to give cyclization precursor **10** (93% yield from **9**).

With hydroxy mesylate 10 in hand, we turned our attention to the cyclization of 10 to dihydropyran 11. This transformation was complicated by a competing elimination pathway (Table 1). Initial attempts to effect the cyclization of 11 using

Table 1. Cyclization of Mesylate 10 to Dihydropyran 11

entry	$\operatorname{conditions}$	$10/11/12^a$	yield of 11 (%)
1	KHMDS, THF, -78 °C	26:0:74	
2	(Bu ₃ Sn) ₂ O, benzene; DMF 80 °C	74:0:26	
3	(Bu ₃ Sn) ₂ O, benzene; NMP 150 °C	30:54:16	36
4	KOtBu, t-BuOH; 40 °C (0.05 M)	23:50:27	41
5	KOtBu, t-AmOH, 0 °C (0.03 M)	0:85:15	80
a D - +	is determined by III NIMD analysis		

^a Ratio determined by ¹H NMR analysis.

a strong base such as KHMDS resulted in exclusive formation of diene 12 (entry 1, Table 1). We anticipated⁷ that use of the less basic tributylstannyl ether¹³ generated from alcohol 10 would minimize elimination and favor the cyclization to dihydropyran 11. However, the requisite tributylstannyl ether, prepared by treatment of 10 with (Bu₃-Sn)₂O in benzene, was not sufficiently nucleophilic to undergo cyclization at 80 °C. Although the cyclization occurred at higher temperatures (150 °C), significant decomposition was observed and only poor yields of 11 were obtained (entry 3, Table 1). After examining a number of other bases, we discovered that KO-t-Bu in protic solvents, under high dilution conditions, gave attractive mixtures (2:1) of 11 relative to the diene 12. Further optimization of the reaction solvent (*tert*-amyl alcohol), temperature (0 °C), and concentration (0.03 M) provided 11 and 12 with 85:15 selectivity (entry 5, Table 1). Dihydropyran was obtained in 80% isolated yield under these conditions.

We turned next to the dihydroxylation reaction required to set the final stereocenters in tetrahydropyran 3. Unfortunately, only a slight preference for dihydroxylation on the bottom face of 11 was observed (dr 1.6:1) under standard OsO₄/NMO conditions (entry 1, Table 2).¹⁴ Attempts to improve the facial selectivity, through the use of the Sharpless asymmetric dihydroxylation protocol¹⁵ with the

Table 2. Dihydroxylation of Dihydropyran 11

dr
1.6:1
3:1
9:1
_

DHQD-IND ligand,¹⁶ provided a slight increase in selectivity (dr 3:1). We found, however, that the diastereoselectivity could be further improved through the use of stoichiometric OsO₄ and TMEDA in CH₂Cl₂ –78 °C,¹⁷ which provided tetrahydropyran **3** in 75% yield and with 9:1 diastereoselectivity (entry 3, Table 2).

Synthesis of the C(43)—C(67) polyene fragment was initiated by protection of **3** as the bis-PMB ether followed by deprotection of the TBDPS group, which delivered primary alcohol **13** in 94% yield (Scheme 2). Oxidation of

Scheme 2. Synthesis of Aldehyde 15

13 using the Swern protocol¹⁸ and treatment of the resulting aldehyde with vinylmagnesium bromide gave allylic alcohol 14 in 91% yield as a 2:1 mixture of diastereomers. Subjection of this mixture to a Johnson ortho ester Claisen rearrangement¹⁹ followed by DIBAL reduction of the resulting ester provided aldehyde 15 in 70% yield.

Org. Lett., Vol. 7, No. 24, 2005 5511

^{(13) (}a) Davies, A. G. *Organotin Chemistry*; Wiley-VCH: Weinheim, 1997. (b) David, S.; Hanessian, S. *Tetrahedron* **1985**, *41*, 643.

⁽¹⁴⁾ VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

⁽¹⁵⁾ Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483.

⁽¹⁶⁾ Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7568.
(17) (a) Tomioka, K.; Nakajima, M.; Koga, K. J. Am. Chem. Soc. 1987, 109, 6213.
(b) Wang, Y.; Babirad, S. A.; Kishi, Y. J. Org. Chem. 1992, 57, 468.
(c) Donohoe, T. J.; Moore, P. R.; Waring, M. J.; Newcombe, N. J. Tetrahedron Lett. 1997, 38, 5027.

⁽¹⁸⁾ Tidwell, T. T. Org. React. 1990, 39, 297.

Scheme 3. Synthesis of the C(43)-C(67) Fragment of AM3

Our plan was to subject pyran **15** to a Horner–Wadsworth–Emmons olenfination reaction with dienylic phosphonate **20** or **21** to complete the synthesis of the C(43)–C(67) fragment **1** (Scheme 3). The synthesis of phosphonates **20** and **21** commenced with the homologation of (*E*)-hepta-4,6-dienal (**16**)²⁰ with commerically available phosphonate **17**, thereby providing tetraene **18**. DIBAL reduction of **18** afforded alcohol **19**, which was converted to the primary bromide upon treatment with CBr₄ and PPh₃. The sensitive dienylic bromide was immediately treated with either sodium diisopropyl phosphite or triethyl phosphite to give **20** and **21**, respectively. Olefination of aldehyde **15** with diisopropyl phosphonate **20** proceeded with 90:10 *E/Z* selectivity,²¹ albeit in only 22% yield (best under the various conditions examined), owing to oligomerization of the

aldehyde **15**. Use of the more reactive diethyl phosphonate **21** led to the isolation of **1** in 66% yield, but with diminished selectivity (86:14 E/Z).

In summary, we have synthesized the C(43)–C(67) fragment 1 of AM3 via the intermediacy of tetrahydropyran 3, an intermediate that we plan also to elaborate into the C(26)–C(42) tetrahydropyran fragment 2. Tetrahydropyran 3 was synthesized in six steps (30% yield) from aldehyde 5b via a sequence featuring the double-allylboration reaction with 6 and the base-mediated cyclization of hydroxy mesylate 10 to dihydropyran 11. Further progress on the synthesis of AM3 will be reported in due course.

Acknowledgment. This work was supported by the National Institutes of Health (GM 38436).

Supporting Information Available: Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL052322J

5512 Org. Lett., Vol. 7, No. 24, 2005

⁽¹⁹⁾ Johnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T. J.;
Li, T.; Faulkner, D. J.; Peterson, M. R. J. Am. Chem. Soc. 1970, 92, 741.
(20) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878.

⁽²¹⁾ Roush, W. R.; Peseckis, S. M.; Walts, A. E. J. Org. Chem. 1984, 49, 3429.